o 2
_h@__o_,
o 0

MRPT
Mobile Robot Programming Toolkit
Version: 2.5.8

graphslam-engine: execute graphSLAM using rawlog files in MRPT

Nikos Koukis
nickkouk@gmail.com
National Technical University of Athens

Document build: Saturday 7" January, 2023

Contents

1 Introduction to graphSLAM

2 Application Usage

2.1 command-line arguments

2.2 Application output

3 Library Design

3.1 Registration Deciders L

3.1.1 Node Registration Deciders (NRD)
3.1.2 Edge Registration Deciders (ERD)
3.2 graphSLAM Optimizers (GSO)
3.3 Notable links o

4 Further Improvements

References

List of Figures

= w N

O UL UL U

graphslam-engine Execute graphSLAM using rawlog files in MRPT

Abstract

Current report delves into the new capabilities of mrpt-graphslam library and provides a com-
plete guide for using the graphslam-engine application. More specifically it deals with the follow-
ing:

e Description of major mrpt-graphslam library structure and concepts (e.g. CGraphSlamEngine,

decider, optimizers classes)

e graphslam-engine usage information (e.g. command line arguments)

The extension of mrpt-graphslam library as well as the coding of the corresponding graphslam-
engine application was implemented as part of the Google Summer of Code 2016 program.

graphslam-engine Execute graphSLAM using rawlog files in MRPT

1 Introduction to graphSLAM

An autonomous robot needs to address two critical problems to survive and navigate within its sur-
roundings: mapping the environment and finding its relative location within the map. Simultaneous
localization and mapping (SLAM) is a process that aims to localize an autonomous mobile robot in a
previously unexplored environment while constructing a consistent and incremental map of its envi-
ronment [1]. While filtering methods (extended Kalman filtering, information-form filtering, particle
filtering) used to dominate the SLAM literature, recently (2006) graph-based approaches have made
a comeback. Introduced by Lu and Milios in 1997 [2] graph-based approaches formulate SLAM as a
least-squares minimization problem.

2 Application Usage

Aim of the app is to perform 2D graphSLAM: Robot localizes itself in the environment while, at the
same time builds a map of that environment. App currently executes SLAM using MRPT rawlog files
(both MRPT rawlog formats are supported) as input which should contain (some of) the following
observation types:

e CObservationOdometry
e CObservation2DRangeScan
e CObservation3DRangeScan
Working with 3DRangeScans is currently in an experimental phase.

The majority of the graphslam-engine parameters in each case should be specified in an external .ini
file which is to be given as a command-line argument. The following parameters can also be specified
as command-line arguments:

.ini-file [REQUIRED |
Specify the .ini configuration file using the -i, -—ini-file flags. Configuration file parameters
are read by the main CGraphSlamEngine class as well as the node/edge registration schemes,
and the optimization scheme.

rawlog-file [REQUIRED |
Specify the rawlog dataset file using the -r, -—-rawlog flags.

ground-truth
Specify a ground truth file with -g, -—ground-truth flags. Ground truth has to be specified if
user has set visualize_slam_metric or visualize_ground_truth to true in the .ini file, otherwise an
exception is raised.

node/edge registration deciders
Specify the node registration or/and edge registration decider classes to be used using -n, --
-node-reg, —-e, ——edge-reg flags. If not specified the default CFixedIntervalsNRD, CICPCri-
teriaERD are used as node and edge registration decider schemes respectively.

optimizer class to be used
Specify the class to be used for the optimization of the pose-graph using the -o, ——optimizer
flags. Currently the only supported optimization scheme is Levenberg-Marquardt non-linear
graph optimization defined in optimize_graph_spa_levmarq. If not specified, the default CLev-
MarqGSO is used.

Furthermore, application offers the following capabilities to the user:

e Support of both kinds of MRPT rawlog formats, action-observations and observation-only for-
mat. However, users should also make sure that the deciders/optimizer classes that are to be
used also support the rawlog format that they are interested in.

e Visual inspection of graphSLAM execution. Apart from others the visualization window can be
configured, by the user, to include the following;:

— graphSLAM estimated robot trajectory
— Odometry-only trajectory

http://reference.mrpt.org/devel/group__mrpt__graphslam__grp.html#ga022f4a70be5ec7c432f46374e4bb9d66

graphslam-engine Execute graphSLAM using rawlog files in MRPT

— ground-truth trajectory (if the corresponding ground-truth is available
— Current robot 2D laser scan footprint
— Draft version of the map
— Currently constructed graph as edges between the registered nodes
e Hotkeys support for triggering various visualization features on/off. i

2.1 command-line arguments

The available command line argument are also listed below, along with a description of their us-
age:

graphslam-engine [--disable-visuals] [--list-optimizers]
[--list-regs] [--list-edge-regs]
[--list-node-regs] [-o <CLevMarqGS0>] [-e
<CICPCriteriaERD>] [-n <CICPCriteriaNRD>] [-g
<contents.rawlog.GT.txt>] [-r <contents.rawlog>] [-i
<config.ini>] [--][--version] [-h]

—-disable-visuals
Disable Visualization - Overrides related visualizex directives of the
.ini file

--list-optimizers
List (all) available graphslam optimizer classes

--list-regs
List (all) available registration decider classes

--list-edge-regs
List available edge registration decider classes

--list-node-regs
List available node registration decider classes

-0 <CLevMarqGS0>, --optimizer <CLevMarqGSO>
Specify GraphSlam Optimizer

—e <CICPCriteriaERD>, --edge-reg <CICPCriteriaERD>
Specify Edge registration decider

-n <CICPCriteriaNRD>, --node-reg <CICPCriteriaNRD>
Specify Node registration decider

-g <contents.rawlog.GT.txt>, --ground-truth <contents.rawlog.GT.txt>
Ground-truth textfile

-r <contents.rawlog>, --rawlog <contents.rawlog>
Rawlog dataset file

-i <config.ini>, --ini_file <config.ini>
.ini configuration file

! Any registration decider / optimizer can get notified of keyboard/mouse events and can modify the visuals when
these occur. For more on this see the corresponding method

http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1_c_registration_decider_or_optimizer.html#a3d8445d2382e282f3a03edfa686c6e22

graphslam-engine Execute graphSLAM using rawlog files in MRPT

--, ~—-ignore_rest
Ignores the rest of the labeled arguments following this flag.

--version
Displays version information and exits.

-h, --help
Displays usage information and exits.

2.2 Application output

By default graphslam-engine execution generates an output directory by the name graphslam_results
within the current working directory. The output directory contains the following files:

CGraphSlamEngine.log
Logfile containing the activity of the CGraphSlamEngine class instance. Activity involves output
logger messages, time statistics for critical parts of the application, and summary statistics about
the constructed graph (e.g. number of registered nodes, edges).
node_registrar.log, edge_registrar.log, optimizer.log
Logfiles containing the activity of the corresponding class instances. File contents depend on
the implementation of the corresponding classes but in most cases they contain output logger
messages, time statistics for critical parts of the class execution.
output_graph.graph
File contains the constructed graph in the VERTEX /EDGE format. The latter can be visualized
using the MRPT graph-slam application for verification reasons. For more information on this,
consult the following pages:
e http://www.mrpt.org/Graph-SLAM_maps
e http://www.mrpt.org/list-of-mrpt-apps/application-graph-slam/
output_scene.3DScene
File contains the 3DScene that was generated in the end of the graphslam-engine execution. The
latter can be visualized using the MRPT SceneViewer3D tool. For more information on this,
see: http://www.mrpt.org/list-of-mrpt-apps/application-sceneviewer3d/

Note: File is generated only when the visualization of the graph construction is enabled in the

.ini configuration file. See .ini parameters as well as the —~—disable flag for more on this.
SLAM _evaluation_metric.log

File contains the differences between the estimated trajectory increments and the corresponding

ground-truth increments and can be used to verify and evaluate the performance of the SLAM

algorithm. For more information on the metric, see [3]

Note: File is generated only when the ground-truth of the corresponding dataset is given.

Note: In case a directory named graphslam results, generated during a previous execution, al-
ready exists, it is, by default, overwritten. If this is not the desired behavior, user can set the
user_decides_about_output_dir .ini parameter to true so that they are asked about this naming conflict
during program execution.

3 Library Design

In this section insight into the graphslam-engine application - and corresponding library - is pro-
vided.

CGraphSlamEngine is the main class executing graphslam. CGraphSlamEngine delegates most of the
graph manipulation tasks to node/edge registration deciders and optimizer classes. This makes up for
independence between the different tasks as well as for a reconfigurable setup, as the user can select

http://www.mrpt.org/Graph-SLAM_maps
http://www.mrpt.org/list-of-mrpt-apps/application-graph-slam/
http://www.mrpt.org/list-of-mrpt-apps/application-sceneviewer3d/

graphslam-engine Execute graphSLAM using rawlog files in MRPT

to use different decider/optimizer classes depending on the situation. Users can also write their own
decider/optimizer classes by inheriting from one of the CNodeRegistrationDecider, CEdgeRegistra-
tionDecider, CGraphSlamOptimizer interfaces depending on what part they want to implement.

3.1 Registration Deciders

The registration decider classes are divided into node and edge registration deciders. The former are
responsible of adding new nodes in the graph while the latter add additional edges between already
registered graph nodes. These nodes can be consecutive or non-consecutive.

3.1.1 Node Registration Deciders (NRD)

Node registration decider schemes add nodes to the graph according to a specific criterion. Node
deciders should implement the methods defined in the CNodeRegistrationDecider abstract class. The
latter provides the basic methods that have to exist in every node registration decider class and which
are called from the main CGraphSlamEngine instance. For an example of inheriting from this class
see CFixedIntervalsNRD.

Currently two specific node registration schemes have been implemented:

e CFixedIntervalsNRD
Decider registers a new node in the graph if the distance or the angle difference with regards to
the previous registered node surpasses a corresponding fixed threshold. Decider makes use only
of the CObservationOdometry instances in the rawlog file.

e CICPCriteriaNRD
Decider registers a new node in the graph if the distance or the angle difference with regards to
the previous registered node surpasses a corresponding fixed threshold. Decider measures the
distance from the current position to the previous registered node using ICP (i.e. matches the
current range scan against the range scan of the previous node). In case of noisy 2D laser scans,
decider can also use odometry information to locally correct and smoothen the robot trajectory.
Decider makes use of 2DRangeScans or 3DRangeScans.

Note: As a naming convention, all the implemented node registration deciders are suffixed with the
NRD acronym. For more information on this see the

node registration deciders interface

3.1.2 Edge Registration Deciders (ERD)

Edge registration decider schemes add edges between already added nodes in the graph according to a
specific criterion. Edge deciders should implement the methods defined in CEdgeRegistrationDecider
abstract class. CEdgeRegistrationDecider provides the basic methods that have to exist in every edge
registration decider class. For an example of inheriting from this class see CICPCriteriaERD.

Currently two specific edge registration schemes have been implemented:

e CICPCriteriaERD
Register new edges in the graph with the last inserted node. Criterion for adding new edges
should be the goodness of the candidate ICP edge. The nodes for ICP are picked based on the
distance from the last inserted node. Decider makes use of 2DRangeScans or 3DRangeScans.

e CLoopCloserERD
Evaluate sets of potential loop closure edges in the graph based on their pairwise consistency
matrix.Decider first splits the graph into partitions based on the 2D laser scans of the nodes
and then searches for potential loop closure edges within the partitions. Goal is to register only
a subset of the potential loop closure edges that maximally agree with each other. Decider is
implemented based on [4], [5]

http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_node_registration_decider.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_edge_registration_decider.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_edge_registration_decider.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_graph_slam_optimizer.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_intervals_n_r_d.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_fixed_intervals_n_r_d.html
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_n_r_d_1_1_t_params.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_node_registration_decider.html
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1deciders_1_1_c_i_c_p_criteria_e_r_d_1_1_t_params.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_loop_closer_e_r_d.html

graphslam-engine Execute graphSLAM using rawlog files in MRPT

Note: As a naming convention, all the implemented edge registration deciders are suffixed with the
ERD acronym.

For more information on this see the edge registration deciders interface

3.2 graphSLAM Optimizers (GSO)

Optimizer classes optimize an already constructed graph so that the registered edges maximally agree
with each other. Optimizer schemes should implement the methods defined in CGraphSlamOptimizer
abstract class. For an example of inheriting from this class see CLevMarqGSO.

Note: As a naming convention, all the implemented optimizer classes are suffixed with the GSO
acronym.

For more information on this see the graphSLAM optimizers interface

3.3 Notable links
Below important links for the library/application are provided:

e graphslam-engine - Application page

Demonstration video

CGraphSlamEngine documentation

Registration Deciders / Optimizers documentation

GSoC 2016 graphslam-engine discussion

Directory of .ini sample files: ../../share/mrpt/config files/graphslam-engine/
Directory of demo datasets: ../../share/mrpt/datasets/graphslam-engine-demos/

4 Further Improvements

As of now, the mrpt-graphslam library is still under active development. A list of features that have
been scheduled for implementation are listed below:

Cleanup and Fix code bugs

Integrate with ROS — Add support for online execution

Add support for multi-robot graphSLAM

Add nodes in the graph in an adaptive fashion

Implement node reduction scheme

Add support for visual sensors (e.g. working with point features as SIFT)
Integrate with 3rd party optimization libraries

For more details on the progress of the aforementioned improvements, see the corresponding github
milestone

http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1deciders_1_1_c_edge_registration_decider.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_graph_slam_optimizer.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_lev_marq_g_s_o.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1optimizers_1_1_c_graph_slam_optimizer.html
http://www.mrpt.org/list-of-mrpt-apps/application-graphslamengine/
https://www.youtube.com/watch?v=Pv0yvlzrcXk
http://reference.mrpt.org/devel/structmrpt_1_1graphslam_1_1_c_graph_slam_engine_1_1_t_r_g_b_d_info_file_params.html
http://reference.mrpt.org/devel/classmrpt_1_1graphslam_1_1_c_registration_decider_or_optimizer.html
https://github.com/MRPT/GSoC2016-discussions/issues/2
../../share/mrpt/config_files/graphslam-engine/
../../share/mrpt/datasets/graphslam-engine-demos/
https://github.com/MRPT/mrpt/milestone/9
https://github.com/MRPT/mrpt/milestone/9

graphslam-engine Execute graphSLAM using rawlog files in MRPT

References

1]

2]

S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-Robot Simultaneous Localization and Map-
ping: A Review,” Journal of Field Robotics, 2016.

F. Lu and E. Milios, “Robot pose estimation in unknown environments by matching 2D range
scans,” IEEE Conference on Computer Vision and Pattern Recognition, pp. 249-275, 1994.

W. Burgard, C. Stachniss, G. Grisetti, B. Steder, R. Kiimmerle, C. Dornhege, M. Ruhnke,
A. Kleiner, and J. D. Tardés, “A Comparison of SLAM Algorithms Based on a Graph of Rela-
tions,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009,
pp- 2089-2095, 2009.

J. L. Blanco, J. Gonzalez, and J. A. Fernandez-Madrigal, “Consistent observation grouping for
generating metric-topological maps that improves robot localization,” Proceedings - IEEE Inter-
national Conference on Robotics and Automation, vol. 2006, no. May, pp. 818-823, 2006.

E. Olson, “Recognizing places using spectrally clustered local matches,” Robotics and Autonomous
Systems, vol. 57, no. 12, pp. 1157-1172, 2009.

G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial on graph-based SLAM,”
IEEE Intelligent Transportation Systems Magazine, vol. 2, no. 4, pp. 31-43, 2010.

J. Blanco, “A tutorial on se (3) transformation parameterizations and on-manifold optimization,”
University of Malaga, Tech. Rep, no. 3, 2010.

	Introduction to graphSLAM
	Application Usage
	command-line arguments
	Application output

	Library Design
	Registration Deciders
	Node Registration Deciders (NRD)
	Edge Registration Deciders (ERD)

	graphSLAM Optimizers (GSO)
	Notable links

	Further Improvements
	References

