6#ifndef HALIDE_RUNTIME_BUFFER_H
7#define HALIDE_RUNTIME_BUFFER_H
20#include <AvailabilityVersions.h>
21#include <TargetConditionals.h>
24#if defined(__has_feature)
25#if __has_feature(memory_sanitizer)
26#include <sanitizer/msan_interface.h>
34#define HALIDE_ALLOCA _alloca
36#define HALIDE_ALLOCA __builtin_alloca
40#if __GNUC__ == 5 && __GNUC_MINOR__ == 1
41#pragma GCC diagnostic ignored "-Warray-bounds"
44#ifndef HALIDE_RUNTIME_BUFFER_CHECK_INDICES
45#define HALIDE_RUNTIME_BUFFER_CHECK_INDICES 0
48#ifndef HALIDE_RUNTIME_BUFFER_ALLOCATION_ALIGNMENT
52#define HALIDE_RUNTIME_BUFFER_ALLOCATION_ALIGNMENT 128
56 "HALIDE_RUNTIME_BUFFER_ALLOCATION_ALIGNMENT must be a power of 2.");
64#ifndef HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC
71 #define HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC 0
73#elif defined(__ANDROID_API__) && __ANDROID_API__ < 28
76 #define HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC 0
78#elif defined(__APPLE__)
80 #if TARGET_OS_OSX && (__MAC_OS_X_VERSION_MIN_REQUIRED < __MAC_10_15)
83 #define HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC 0
85 #elif TARGET_OS_IPHONE && (__IPHONE_OS_VERSION_MIN_REQUIRED < __IPHONE_14_0)
88 #define HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC 0
93 #define HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC 1
99 #if defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC)
102 #define HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC 0
107 #define HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC 1
120template<
typename T,
int Dims,
int InClassDimStorage>
125template<
typename...
Args>
131template<
typename T,
typename...
Args>
133 static const bool value = std::is_convertible<T, int>::value &&
AllInts<
Args...>::value;
139template<
typename...
Args>
142template<
typename...
Args>
147template<
typename Container>
158 static inline void *(*default_allocate_fn)(
size_t) =
nullptr;
218template<
typename T = void,
237 static const bool T_is_void = std::is_same<typename std::remove_const<T>::type,
void>::value;
240 template<
typename T2>
241 using add_const_if_T_is_const =
typename std::conditional<std::is_const<T>::value,
const T2,
T2>::type;
245 using not_void_T =
typename std::conditional<T_is_void,
246 add_const_if_T_is_const<uint8_t>,
250 using not_const_T =
typename std::remove_const<T>::type;
256 using storage_T =
typename std::conditional<std::is_pointer<T>::value,
uint64_t, not_void_T>::type;
260 static constexpr bool has_static_halide_type = !T_is_void;
270 return alloc !=
nullptr;
281 static_assert(!has_static_dimensions || static_dimensions() >= 0);
285 void incref()
const {
286 if (owns_host_memory()) {
290 if (!dev_ref_count) {
296 dev_ref_count =
new DeviceRefCount;
298 dev_ref_count->
count++;
304 struct DevRefCountCropped : DeviceRefCount {
311 Buffer<T, AnyDims> cropped_from;
312 explicit DevRefCountCropped(
const Buffer<T, AnyDims> &cropped_from)
313 : cropped_from(cropped_from) {
314 ownership = BufferDeviceOwnership::Cropped;
319 void crop_from(
const Buffer<T, AnyDims> &cropped_from) {
320 assert(dev_ref_count ==
nullptr);
321 dev_ref_count =
new DevRefCountCropped(cropped_from);
331 alloc->~AllocationHeader();
336 set_host_dirty(
false);
344 assert(!(alloc && device_dirty()) &&
345 "Implicitly freeing a dirty device allocation while a host allocation still lives. "
346 "Call device_free explicitly if you want to drop dirty device-side data. "
347 "Call copy_to_host explicitly if you want the data copied to the host allocation "
348 "before the device allocation is freed.");
365 delete (DevRefCountCropped *)dev_ref_count;
367 delete dev_ref_count;
371 dev_ref_count =
nullptr;
376 void free_shape_storage() {
377 if (buf.
dim != shape) {
383 template<
int DimsSpecified>
384 void make_static_shape_storage() {
386 "Number of arguments to Buffer() does not match static dimensionality");
401 void make_shape_storage(
const int dimensions) {
403 assert(
false &&
"Number of arguments to Buffer() does not match static dimensionality");
413 make_shape_storage(
other.dimensions);
417 template<
typename T2,
int D2,
int S2>
420 copy_shape_from(
other.buf);
423 other.buf.dim =
nullptr;
433 dev_ref_count =
new DeviceRefCount;
439 void initialize_shape(
const int *
sizes) {
452 void initialize_shape(
const std::vector<int> &
sizes) {
454 initialize_shape(
sizes.data());
458 template<
typename Array,
size_t N>
459 void initialize_shape_from_array_shape(
int next,
Array (&
vals)[
N]) {
465 initialize_shape_from_array_shape(next - 1,
vals[0]);
471 template<
typename T2>
472 void initialize_shape_from_array_shape(
int,
const T2 &) {
476 template<
typename Array,
size_t N>
477 static int dimensionality_of_array(
Array (&
vals)[
N]) {
478 return dimensionality_of_array(
vals[0]) + 1;
481 template<
typename T2>
482 static int dimensionality_of_array(
const T2 &) {
487 template<
typename Array,
size_t N>
489 return scalar_type_of_array(
vals[0]);
492 template<
typename T2>
498 void crop_host(
int d,
int min,
int extent) {
500 assert(dim(d).
max() >= min + extent - 1);
502 if (buf.
host !=
nullptr) {
503 buf.
host += (
shift * dim(d).stride()) * type().bytes();
510 void crop_host(
const std::vector<std::pair<int, int>> &rect) {
511 assert(rect.size() <=
static_cast<decltype(rect.size())
>(std::numeric_limits<int>::max()));
515 crop_host(
i, rect[
i].first, rect[
i].
second);
535 void slice_host(
int d,
int pos) {
538 assert(d >= 0 && d < dimensions());
542 if (buf.
host !=
nullptr) {
594 return min() + extent() - 1;
605 return val != other.
val;
620 return {min() + extent()};
640 return dim(
i).extent();
643 return dim(
i).stride();
650 return buf.number_of_elements();
655 if constexpr (has_static_dimensions) {
671 return (T *)buf.begin();
677 return (T *)buf.end();
682 return buf.size_in_bytes();
694 buf.
type = static_halide_type();
704 assert(T_is_void || buf.
type == static_halide_type());
705 initialize_from_buffer(buf, ownership);
709 template<
typename T2,
int D2,
int S2>
713 template<
typename T2,
int D2,
int S2>
714 static void static_assert_can_convert_from() {
715 static_assert((!std::is_const<T2>::value || std::is_const<T>::value),
716 "Can't convert from a Buffer<const T> to a Buffer<T>");
717 static_assert(std::is_same<typename std::remove_const<T>::type,
718 typename std::remove_const<T2>::type>::value ||
720 "type mismatch constructing Buffer");
722 "Can't convert from a Buffer with static dimensionality to a Buffer with different static dimensionality");
736 template<
typename T2,
int D2,
int S2>
740 if (
other.type() != static_halide_type()) {
754 template<
typename T2,
int D2,
int S2>
768 dev_ref_count =
other.dev_ref_count;
769 copy_shape_from(
other.buf);
778 template<
typename T2,
int D2,
int S2>
782 assert_can_convert_from(
other);
784 dev_ref_count =
other.dev_ref_count;
785 copy_shape_from(
other.buf);
792 dev_ref_count(
other.dev_ref_count) {
793 other.dev_ref_count =
nullptr;
794 other.alloc =
nullptr;
802 template<
typename T2,
int D2,
int S2>
806 dev_ref_count(
other.dev_ref_count) {
807 assert_can_convert_from(
other);
808 other.dev_ref_count =
nullptr;
809 other.alloc =
nullptr;
817 template<
typename T2,
int D2,
int S2>
819 if ((
const void *)
this == (
const void *)&
other) {
822 assert_can_convert_from(
other);
825 dev_ref_count =
other.dev_ref_count;
827 free_shape_storage();
829 copy_shape_from(
other.buf);
836 if ((
const void *)
this == (
const void *)&
other) {
841 dev_ref_count =
other.dev_ref_count;
843 free_shape_storage();
845 copy_shape_from(
other.buf);
852 template<
typename T2,
int D2,
int S2>
854 assert_can_convert_from(
other);
857 other.alloc =
nullptr;
858 dev_ref_count =
other.dev_ref_count;
859 other.dev_ref_count =
nullptr;
860 free_shape_storage();
871 other.alloc =
nullptr;
872 dev_ref_count =
other.dev_ref_count;
873 other.dev_ref_count =
nullptr;
874 free_shape_storage();
883 size_t size = type().bytes();
884 for (
int i = 0;
i < dimensions();
i++) {
885 size *= dim(
i).extent();
889 for (
int i = 0;
i < dimensions();
i++) {
890 size /= dim(
i).extent();
892 assert(size == (
size_t)type().bytes() &&
"Error: Overflow computing total size of buffer.");
898 void (*deallocate_fn)(
void *) =
nullptr) {
907 const auto align_up = [=](
size_t value) ->
size_t {
908 return (value + alignment - 1) & ~(alignment - 1);
911 size_t size = size_in_bytes();
913#if HALIDE_RUNTIME_BUFFER_USE_ALIGNED_ALLOC
935 if (!deallocate_fn) {
937 if (!deallocate_fn) {
938 deallocate_fn =
free;
950 (
int)
sizeof(std::max_align_t)));
976 template<
typename...
Args,
977 typename =
typename std::enable_if<
AllInts<
Args...>::value>::type>
980 assert(static_halide_type() == t);
982 int extents[] = {first, (
int)rest...};
986 initialize_shape(extents);
1000 static_assert(!T_is_void,
1001 "To construct an Buffer<void>, pass a halide_type_t as the first argument to the constructor");
1002 int extents[] = {first};
1003 buf.
type = static_halide_type();
1006 initialize_shape(extents);
1013 template<
typename...
Args,
1014 typename =
typename std::enable_if<
AllInts<
Args...>::value>::type>
1016 static_assert(!T_is_void,
1017 "To construct an Buffer<void>, pass a halide_type_t as the first argument to the constructor");
1018 int extents[] = {first,
second, (
int)rest...};
1019 buf.
type = static_halide_type();
1022 initialize_shape(extents);
1033 assert(static_halide_type() == t);
1037 make_shape_storage((
int)
sizes.size());
1038 initialize_shape(
sizes);
1052 static std::vector<int> make_ordered_sizes(
const std::vector<int> &
sizes,
const std::vector<int> &order) {
1055 for (
size_t i = 0;
i <
sizes.size(); ++
i) {
1077 template<
typename Array,
size_t N>
1080 buf.
type = scalar_type_of_array(
vals);
1090 template<
typename...
Args,
1091 typename =
typename std::enable_if<
AllInts<
Args...>::value>::type>
1094 assert(static_halide_type() == t);
1096 int extents[] = {first, (
int)rest...};
1101 initialize_shape(extents);
1107 template<
typename...
Args,
1108 typename =
typename std::enable_if<
AllInts<
Args...>::value>::type>
1110 int extents[] = {first, (
int)rest...};
1111 buf.
type = static_halide_type();
1115 initialize_shape(extents);
1123 buf.
type = static_halide_type();
1125 make_shape_storage((
int)
sizes.size());
1126 initialize_shape(
sizes);
1135 assert(static_halide_type() == t);
1139 make_shape_storage((
int)
sizes.size());
1140 initialize_shape(
sizes);
1148 assert(static_halide_type() == t);
1152 make_shape_storage(d);
1153 for (
int i = 0;
i < d;
i++) {
1154 buf.
dim[
i] = shape[
i];
1162 const std::vector<halide_dimension_t> &shape)
1163 :
Buffer(t, data, (
int)shape.size(), shape.data()) {
1170 buf.
type = static_halide_type();
1172 make_shape_storage(d);
1173 for (
int i = 0;
i < d;
i++) {
1174 buf.
dim[
i] = shape[
i];
1181 explicit inline Buffer(T *data,
const std::vector<halide_dimension_t> &shape)
1182 :
Buffer(data, (
int)shape.size(), shape.data()) {
1190 free_shape_storage();
1217 template<
typename T2,
int D2 = Dims>
1230 template<
typename T2,
int D2 = Dims>
1243 template<
typename T2,
int D2 = Dims>
1279 template<
typename TVoid,
1281 typename =
typename std::enable_if<std::is_same<TVoid, void>::value &&
1282 !std::is_void<T2>::value &&
1283 !std::is_const<T2>::value>::type>
1290 template<
typename TVoid,
1292 typename =
typename std::enable_if<std::is_same<TVoid, void>::value &&
1293 !std::is_void<T2>::value &&
1294 std::is_const<T2>::value>::type>
1302 return (dimensions() > 0) ? dim(0).extent() : 1;
1305 return (dimensions() > 1) ? dim(1).extent() : 1;
1308 return (dimensions() > 2) ? dim(2).extent() : 1;
1315 return dim(0).min();
1319 return dim(0).max();
1323 return dim(1).min();
1327 return dim(1).max();
1344 void (*deallocate_fn)(
void *) =
nullptr)
const {
1355 void (*deallocate_fn)(
void *) =
nullptr)
const {
1357 assert(dimensions() == 3);
1359 dst.
set_min(min(0), min(1), min(2));
1369 void (*deallocate_fn)(
void *) =
nullptr)
const {
1370 std::vector<int> mins, extents;
1371 const int dims = dimensions();
1373 extents.reserve(dims);
1374 for (
int d = 0; d < dims; ++d) {
1375 mins.push_back(dim(d).min());
1376 extents.push_back(dim(d).extent());
1407 template<
typename T2,
int D2,
int S2>
1409 static_assert(!std::is_const<T>::value,
"Cannot call copy_from() on a Buffer<const T>");
1410 assert(!device_dirty() &&
"Cannot call Halide::Runtime::Buffer::copy_from on a device dirty destination.");
1411 assert(!src.
device_dirty() &&
"Cannot call Halide::Runtime::Buffer::copy_from on a device dirty source.");
1419 const int d = dimensions();
1420 for (
int i = 0;
i < d;
i++) {
1435 if (T_is_void ? (type().bytes() == 1) : (
sizeof(not_void_T) == 1)) {
1440 }
else if (T_is_void ? (type().bytes() == 2) : (
sizeof(not_void_T) == 2)) {
1445 }
else if (T_is_void ? (type().bytes() == 4) : (
sizeof(not_void_T) == 4)) {
1450 }
else if (T_is_void ? (type().bytes() == 8) : (
sizeof(not_void_T) == 8)) {
1456 assert(
false &&
"type().bytes() must be 1, 2, 4, or 8");
1473 im.device_deallocate();
1475 im.crop_host(d, min, extent);
1477 complete_device_crop(
im);
1485 void crop(
int d,
int min,
int extent) {
1491 *
this = cropped(d, min, extent);
1493 crop_host(d, min, extent);
1509 im.device_deallocate();
1513 complete_device_crop(
im);
1522 void crop(
const std::vector<std::pair<int, int>> &rect) {
1528 *
this = cropped(rect);
1540 im.translate(d,
dx);
1548 device_deallocate();
1563 device_deallocate();
1575 assert(mins.size() <=
static_cast<decltype(mins.size())
>(dimensions()));
1576 device_deallocate();
1577 for (
size_t i = 0;
i < mins.size();
i++) {
1582 template<
typename...
Args>
1584 set_min(std::vector<int>{args...});
1592 for (
size_t i = 0;
i <
coords.size();
i++) {
1600 template<
typename...
Args>
1602 return contains(std::vector<int>{args...});
1634 assert((
int)order.size() == dimensions());
1635 if (dimensions() < 2) {
1644 transpose(
j,
j - 1);
1653 im.transpose(order);
1661 static_assert(
Dims ==
AnyDims ||
Dims > 0,
"Cannot slice a 0-dimensional buffer");
1662 assert(dimensions() > 0);
1669 im.device_deallocate();
1671 im.slice_host(d,
pos);
1673 complete_device_slice(
im, d,
pos);
1682 static_assert(
Dims ==
AnyDims ||
Dims > 0,
"Cannot slice a 0-dimensional buffer");
1683 assert(dimensions() > 0);
1685 return sliced(d, dim(d).min());
1694 static_assert(
Dims ==
AnyDims,
"Cannot call slice() on a Buffer with static dimensionality.");
1695 assert(dimensions() > 0);
1702 *
this = sliced(d,
pos);
1710 slice(d, dim(d).min());
1733 static_assert(
Dims ==
AnyDims,
"Cannot call embed() on a Buffer with static dimensionality.");
1734 assert(d >= 0 && d <= dimensions());
1736 translate(dimensions() - 1,
pos);
1737 for (
int i = dimensions() - 1;
i > d;
i--) {
1738 transpose(
i,
i - 1);
1747 static_assert(
Dims ==
AnyDims,
"Cannot call add_dimension() on a Buffer with static dimensionality.");
1750 if (buf.
dim != shape) {
1753 for (
int i = 0;
i < dims;
i++) {
1761 for (
int i = 0;
i < dims;
i++) {
1762 buf.
dim[
i] = shape[
i];
1767 buf.
dim[dims] = {0, 1, 0};
1789 assert((!v || !device_dirty()) &&
"Cannot set host dirty when device is already dirty. Call copy_to_host() before accessing the buffer from host.");
1790 buf.set_host_dirty(v);
1798 return buf.device_dirty();
1802 return buf.host_dirty();
1806 assert((!v || !host_dirty()) &&
"Cannot set device dirty when host is already dirty.");
1807 buf.set_device_dirty(v);
1811 if (device_dirty()) {
1829 if (dev_ref_count) {
1831 "Can't call device_free on an unmanaged or wrapped native device handle. "
1832 "Free the source allocation or call device_detach_native instead.");
1835 "Multiple Halide::Runtime::Buffer objects share this device "
1836 "allocation. Freeing it would create dangling references. "
1837 "Don't call device_free on Halide buffers that you have copied or "
1838 "passed by value.");
1844 if (dev_ref_count) {
1845 delete dev_ref_count;
1846 dev_ref_count =
nullptr;
1853 assert(device_interface);
1856 return device_interface->
wrap_native(
ctx, &buf, handle, device_interface);
1862 "Only call device_detach_native on buffers wrapping a native "
1863 "device handle via device_wrap_native. This buffer was allocated "
1864 "using device_malloc, or is unmanaged. "
1865 "Call device_free or free the original allocation instead.");
1868 "Multiple Halide::Runtime::Buffer objects share this device "
1869 "allocation. Freeing it could create dangling references. "
1870 "Don't call device_detach_native on Halide buffers that you "
1871 "have copied or passed by value.");
1876 delete dev_ref_count;
1877 dev_ref_count =
nullptr;
1886 if (dev_ref_count) {
1888 "Can't call device_and_host_free on a device handle not allocated with device_and_host_malloc. "
1889 "Free the source allocation or call device_detach_native instead.");
1892 "Multiple Halide::Runtime::Buffer objects share this device "
1893 "allocation. Freeing it would create dangling references. "
1894 "Don't call device_and_host_free on Halide buffers that you have copied or "
1895 "passed by value.");
1901 if (dev_ref_count) {
1902 delete dev_ref_count;
1903 dev_ref_count =
nullptr;
1909 return buf.device_sync(
ctx);
1918 if (dev_ref_count ==
nullptr) {
1932 static_assert(
Dims ==
AnyDims ||
Dims == 3,
"make_interleaved() must be called on a Buffer that can represent 3 dimensions.");
1948 return make_interleaved(static_halide_type(), width, height, channels);
1954 static_assert(
Dims ==
AnyDims ||
Dims == 3,
"make_interleaved() must be called on a Buffer that can represent 3 dimensions.");
1963 return make_interleaved(static_halide_type(), data, width, height, channels);
1968 static_assert(
Dims ==
AnyDims ||
Dims == 0,
"make_scalar() must be called on a Buffer that can represent 0 dimensions.");
1976 static_assert(
Dims ==
AnyDims ||
Dims == 0,
"make_scalar() must be called on a Buffer that can represent 0 dimensions.");
1984 static_assert(
Dims ==
AnyDims ||
Dims == 0,
"make_scalar() must be called on a Buffer that can represent 0 dimensions.");
1992 template<
typename T2,
int D2,
int S2>
1995 void (*deallocate_fn)(
void *) =
nullptr) {
2007 void (*deallocate_fn)(
void *)) {
2009 std::vector<int>
swaps;
2010 for (
int i = dimensions - 1;
i > 0;
i--) {
2011 for (
int j =
i;
j > 0;
j--) {
2012 if (shape[
j - 1].stride > shape[
j].stride) {
2013 std::swap(shape[
j - 1], shape[
j]);
2021 for (
int i = 0;
i < dimensions;
i++) {
2030 while (!
swaps.empty()) {
2032 std::swap(shape[
j - 1], shape[
j]);
2044 template<
typename...
Args>
2047 offset_of(
int d,
int first,
Args... rest)
const {
2048#if HALIDE_RUNTIME_BUFFER_CHECK_INDICES
2060 template<
typename...
Args>
2063 address_of(
Args... args)
const {
2065 return (storage_T *)(this->buf.
host) + offset_of(0, args...) * type().bytes();
2067 return (storage_T *)(this->buf.
host) + offset_of(0, args...);
2074 for (
int i = this->dimensions() - 1;
i >= 0;
i--) {
2075#if HALIDE_RUNTIME_BUFFER_CHECK_INDICES
2085 storage_T *address_of(
const int *
pos)
const {
2087 return (storage_T *)this->buf.
host + offset_of(
pos) * type().bytes();
2089 return (storage_T *)this->buf.
host + offset_of(
pos);
2096 return (T *)(this->buf.
host);
2106 template<
typename...
Args,
2107 typename =
typename std::enable_if<
AllInts<
Args...>::value>::type>
2109 static_assert(!T_is_void,
2110 "Cannot use operator() on Buffer<void> types");
2112 static_assert(
Dims ==
AnyDims ||
Dims ==
expected_dims,
"Buffer with static dimensions was accessed with the wrong number of coordinates in operator()");
2114 return *((
const not_void_T *)(address_of(first, rest...)));
2120 static_assert(!T_is_void,
2121 "Cannot use operator() on Buffer<void> types");
2123 static_assert(
Dims ==
AnyDims ||
Dims ==
expected_dims,
"Buffer with static dimensions was accessed with the wrong number of coordinates in operator()");
2125 return *((
const not_void_T *)(data()));
2131 static_assert(!T_is_void,
2132 "Cannot use operator() on Buffer<void> types");
2134 return *((
const not_void_T *)(address_of(
pos)));
2137 template<
typename...
Args,
2138 typename =
typename std::enable_if<
AllInts<
Args...>::value>::type>
2142 static_assert(!T_is_void,
2143 "Cannot use operator() on Buffer<void> types");
2145 static_assert(
Dims ==
AnyDims ||
Dims ==
expected_dims,
"Buffer with static dimensions was accessed with the wrong number of coordinates in operator()");
2147 return *((not_void_T *)(address_of(first, rest...)));
2153 static_assert(!T_is_void,
2154 "Cannot use operator() on Buffer<void> types");
2156 static_assert(
Dims ==
AnyDims ||
Dims ==
expected_dims,
"Buffer with static dimensions was accessed with the wrong number of coordinates in operator()");
2158 return *((not_void_T *)(data()));
2164 static_assert(!T_is_void,
2165 "Cannot use operator() on Buffer<void> types");
2167 return *((not_void_T *)(address_of(
pos)));
2173 bool all_equal =
true;
2174 for_each_element([&](
const int *
pos) { all_equal &= (*this)(
pos) == val; });
2180 for_each_value([=](T &v) { v = val; });
2188 struct for_each_value_task_dim {
2189 std::ptrdiff_t extent;
2190 std::ptrdiff_t stride[
N];
2196 template<
typename Ptr,
typename...
Ptrs>
2199 advance_ptrs(stride + 1,
ptrs...);
2203 static void advance_ptrs(
const std::ptrdiff_t *) {
2206 template<
typename Fn,
typename Ptr,
typename...
Ptrs>
2208 const for_each_value_task_dim<
sizeof...(
Ptrs) + 1> *t,
Ptr ptr,
Ptrs...
ptrs) {
2211 Ptr end = ptr + t[0].extent;
2212 while (ptr != end) {
2213 f(*ptr++, (*
ptrs++)...);
2216 for (std::ptrdiff_t
i = t[0].extent;
i != 0;
i--) {
2217 f(*ptr, (*ptrs)...);
2218 advance_ptrs(t[0].stride, ptr,
ptrs...);
2222 for (std::ptrdiff_t
i = t[d].extent;
i != 0;
i--) {
2224 advance_ptrs(t[d].stride, ptr,
ptrs...);
2233 const int dimensions = buffers[0]->
dimensions;
2237 for (
int i = 0;
i <
N;
i++) {
2238 if (buffers[
i]->device) {
2240 "Buffer passed to for_each_value has device allocation but no host allocation. Call allocate() and copy_to_host() first");
2241 assert(!buffers[
i]->device_dirty() &&
2242 "Buffer passed to for_each_value is dirty on device. Call copy_to_host() first");
2245 "Buffer passed to for_each_value has no host or device allocation");
2250 for (
int i = 0;
i < dimensions;
i++) {
2251 for (
int j = 0;
j <
N;
j++) {
2252 assert(buffers[
j]->dimensions == dimensions);
2253 assert(buffers[
j]->dim[
i].extent == buffers[0]->dim[
i].extent &&
2254 buffers[
j]->dim[
i].min == buffers[0]->dim[
i].min);
2263 for (
int j =
i;
j > 0 && t[
j].stride[
N - 1] < t[
j - 1].stride[
N - 1];
j--) {
2264 std::swap(t[
j], t[
j - 1]);
2271 for (
int i = 1;
i < d;
i++) {
2273 for (
int j = 0;
j <
N;
j++) {
2274 flat =
flat && t[
i - 1].stride[
j] * t[
i - 1].extent == t[
i].stride[
j];
2277 t[
i - 1].extent *= t[
i].extent;
2278 for (
int j =
i;
j < d - 1;
j++) {
2290 for (
int i = 0;
i <
N;
i++) {
2297 template<
typename Fn,
typename...
Args,
int N =
sizeof...(Args) + 1>
2299 if (dimensions() > 0) {
2338 template<
typename Fn,
typename...
Args,
int N =
sizeof...(Args) + 1>
2340 for_each_value_impl(f, std::forward<Args>(
other_buffers)...);
2344 template<
typename Fn,
typename...
Args,
int N =
sizeof...(Args) + 1>
2348 for_each_value_impl(f, std::forward<Args>(
other_buffers)...);
2355 struct for_each_element_task_dim {
2362 template<
typename Fn,
2364 typename =
decltype(std::declval<Fn>()(std::declval<Args>()...))>
2365 HALIDE_ALWAYS_INLINE static void for_each_element_variadic(
int,
int,
const for_each_element_task_dim *,
Fn &&f,
Args... args) {
2371 template<
typename Fn,
2373 HALIDE_ALWAYS_INLINE static void for_each_element_variadic(
double,
int d,
const for_each_element_task_dim *t,
Fn &&f,
Args... args) {
2374 for (
int i = t[d].min;
i <= t[d].
max;
i++) {
2375 for_each_element_variadic(0, d - 1, t, std::forward<Fn>(f),
i, args...);
2381 template<
typename Fn,
2383 typename =
decltype(std::declval<Fn>()(std::declval<Args>()...))>
2385 return (
int)(
sizeof...(Args));
2391 template<
typename Fn,
2394 static_assert(
sizeof...(args) <= 256,
2395 "Callable passed to for_each_element must accept either a const int *,"
2396 " or up to 256 ints. No such operator found. Expect infinite template recursion.");
2397 return num_args(0, std::forward<Fn>(f), 0, args...);
2407 typename =
typename std::enable_if<(d >= 0)>::type>
2408 HALIDE_ALWAYS_INLINE static void for_each_element_array_helper(
int,
const for_each_element_task_dim *t,
Fn &&f,
int *
pos) {
2409 for (
pos[d] = t[d].min;
pos[d] <= t[d].
max;
pos[d]++) {
2410 for_each_element_array_helper<d - 1>(0, t, std::forward<Fn>(f),
pos);
2417 typename =
typename std::enable_if<(d < 0)>::type>
2418 HALIDE_ALWAYS_INLINE static void for_each_element_array_helper(
double,
const for_each_element_task_dim *t,
Fn &&f,
int *
pos) {
2427 template<
typename Fn>
2428 static void for_each_element_array(
int d,
const for_each_element_task_dim *t,
Fn &&f,
int *
pos) {
2431 }
else if (d == 0) {
2436 }
else if (d == 1) {
2438 }
else if (d == 2) {
2440 }
else if (d == 3) {
2443 for (
pos[d] = t[d].min;
pos[d] <= t[d].
max;
pos[d]++) {
2444 for_each_element_array(d - 1, t, std::forward<Fn>(f),
pos);
2452 template<
typename Fn,
2453 typename =
decltype(std::declval<Fn>()((
const int *)
nullptr))>
2454 static void for_each_element(
int,
int dims,
const for_each_element_task_dim *t,
Fn &&f,
int check = 0) {
2455 const int size = dims *
sizeof(
int);
2460 for_each_element_array(dims - 1, t, std::forward<Fn>(f),
pos);
2465 template<
typename Fn>
2466 HALIDE_ALWAYS_INLINE static void for_each_element(
double,
int dims,
const for_each_element_task_dim *t,
Fn &&f) {
2467 int args = num_args(0, std::forward<Fn>(f));
2469 for_each_element_variadic(0, args - 1, t, std::forward<Fn>(f));
2472 template<
typename Fn>
2473 void for_each_element_impl(
Fn &&f)
const {
2474 for_each_element_task_dim *t =
2475 (for_each_element_task_dim *)
HALIDE_ALLOCA(dimensions() *
sizeof(for_each_element_task_dim));
2476 for (
int i = 0;
i < dimensions();
i++) {
2477 t[
i].min = dim(
i).min();
2478 t[
i].max = dim(
i).max();
2480 for_each_element(0, dimensions(), t, std::forward<Fn>(f));
2541 template<
typename Fn>
2543 for_each_element_impl(f);
2547 template<
typename Fn>
2551 for_each_element_impl(f);
2557 template<
typename Fn>
2562 template<
typename...
Args,
2563 typename =
decltype(std::declval<Fn>()(std::declval<Args>()...))>
2564 void operator()(
Args... args) {
2565 (*buf)(args...) = f(args...);
2578 template<
typename Fn,
2579 typename =
typename std::enable_if<!std::is_arithmetic<typename std::decay<Fn>::type>::value>::type>
2583 return for_each_element(
wrapper);
2591 return buf.is_bounds_query();
2600#if defined(__has_feature)
2601#if __has_feature(memory_sanitizer)
#define HALIDE_RUNTIME_BUFFER_ALLOCATION_ALIGNMENT
This file declares the routines used by Halide internally in its runtime.
#define HALIDE_NEVER_INLINE
@ halide_error_code_success
There was no error.
#define HALIDE_ALWAYS_INLINE
Read-only access to the shape.
HALIDE_ALWAYS_INLINE int min() const
The lowest coordinate in this dimension.
Dimension(const halide_dimension_t &dim)
HALIDE_ALWAYS_INLINE int max() const
The highest coordinate in this dimension.
HALIDE_ALWAYS_INLINE iterator end() const
An iterator that points to one past the max coordinate.
HALIDE_ALWAYS_INLINE int stride() const
The number of elements in memory you have to step over to increment this coordinate by one.
HALIDE_ALWAYS_INLINE iterator begin() const
An iterator that points to the min coordinate.
HALIDE_ALWAYS_INLINE int extent() const
The extent of the image along this dimension.
A templated Buffer class that wraps halide_buffer_t and adds functionality.
Buffer< T, Dims, InClassDimStorage > & operator=(const Buffer< T2, D2, S2 > &other)
Assign from another Buffer of possibly-different dimensionality and type.
Buffer< not_const_T, Dims, InClassDimStorage > copy_to_planar(void *(*allocate_fn)(size_t)=nullptr, void(*deallocate_fn)(void *)=nullptr) const
Like copy(), but the copy is created in planar memory layout (vs.
Buffer< T, Dims, InClassDimStorage > transposed(const std::vector< int > &order) const
Make a buffer which refers to the same data in the same layout using a different ordering of the dime...
void translate(int d, int delta)
Translate an image in-place along one dimension by changing how it is indexed.
Buffer(const halide_buffer_t &buf, BufferDeviceOwnership ownership=BufferDeviceOwnership::Unmanaged)
Make a Buffer from a halide_buffer_t.
void allocate(void *(*allocate_fn)(size_t)=nullptr, void(*deallocate_fn)(void *)=nullptr)
Allocate memory for this Buffer.
Buffer< not_const_T, Dims, InClassDimStorage > copy(void *(*allocate_fn)(size_t)=nullptr, void(*deallocate_fn)(void *)=nullptr) const
Make a new image which is a deep copy of this image.
Buffer< T,(Dims==AnyDims ? AnyDims :Dims+1)> embedded(int d, int pos=0) const
Make a new buffer that views this buffer as a single slice in a higher-dimensional space.
void add_dimension()
Add a new dimension with a min of zero and an extent of one.
void slice(int d)
Slice a buffer in-place at the dimension's minimum.
static void set_default_allocate_fn(void *(*allocate_fn)(size_t))
bool owns_host_memory() const
Does this Buffer own the host memory it refers to?
int width() const
Conventional names for the first three dimensions.
void transpose(const std::vector< int > &order)
A generalized transpose: instead of swapping two dimensions, pass a vector that lists each dimension ...
void set_min(const std::vector< int > &mins)
Set the min coordinate of an image in the first N dimensions.
HALIDE_ALWAYS_INLINE Buffer< T, Dims, InClassDimStorage > & for_each_element(Fn &&f)
Buffer(halide_type_t t, add_const_if_T_is_const< void > *data, const std::vector< int > &sizes)
Initialize an Buffer of runtime type from a pointer and a vector of sizes.
HALIDE_ALWAYS_INLINE Buffer< T2, D2, InClassDimStorage > as() &&
Return an rval reference to this Buffer.
int copy_to_host(void *ctx=nullptr)
Buffer(halide_type_t t, const std::vector< int > &sizes)
Allocate a new image of unknown type using a vector of ints as the size.
int device_malloc(const struct halide_device_interface_t *device_interface, void *ctx=nullptr)
int device_free(void *ctx=nullptr)
bool contains(Args... args) const
void crop(const std::vector< std::pair< int, int > > &rect)
Crop an image in-place along the first N dimensions.
HALIDE_ALWAYS_INLINE const Buffer< typename std::add_const< T >::type, Dims, InClassDimStorage > & as_const() const &
void set_device_dirty(bool v=true)
HALIDE_ALWAYS_INLINE const not_void_T & operator()(const int *pos) const
Buffer(T *data, int d, const halide_dimension_t *shape)
Initialize an Buffer from a pointer to the min coordinate and an array describing the shape.
Buffer(Buffer< T2, D2, S2 > &&other)
Move-construct a Buffer from a Buffer of different dimensionality and type.
void slice(int d, int pos)
Rewrite the buffer to refer to a single lower-dimensional slice of itself along the given dimension a...
HALIDE_ALWAYS_INLINE const not_void_T & operator()(int first, Args... rest) const
Access elements.
HALIDE_ALWAYS_INLINE void set_host_dirty(bool v=true)
Methods for managing any GPU allocation.
void msan_check_mem_is_initialized(bool entire=false) const
Convenient check to verify that all of the interesting bytes in the Buffer are initialized under MSAN...
HALIDE_ALWAYS_INLINE Buffer< typename std::add_const< T >::type, Dims, InClassDimStorage > as_const() &&
Buffer< T, Dims, InClassDimStorage > & operator=(Buffer< T, Dims, InClassDimStorage > &&other) noexcept
Standard move-assignment operator.
int device_detach_native(void *ctx=nullptr)
int device_wrap_native(const struct halide_device_interface_t *device_interface, uint64_t handle, void *ctx=nullptr)
Buffer< T, Dims, InClassDimStorage > translated(const std::vector< int > &delta) const
Make an image which refers to the same data translated along the first N dimensions.
HALIDE_ALWAYS_INLINE Dimension dim(int i) const
Access the shape of the buffer.
Buffer(int first, int second, Args... rest)
HALIDE_ALWAYS_INLINE Buffer< typename std::add_const< T >::type, Dims, InClassDimStorage > & as_const() &
as_const() is syntactic sugar for .as<const T>(), to avoid the need to recapitulate the type argument...
Buffer< T, Dims, InClassDimStorage > transposed(int d1, int d2) const
Make a buffer which refers to the same data in the same layout using a swapped indexing order for the...
HALIDE_ALWAYS_INLINE Buffer< T, Dims, InClassDimStorage > & for_each_value(Fn &&f, Args &&...other_buffers)
HALIDE_ALWAYS_INLINE not_void_T & operator()()
BufferDeviceOwnership device_ownership() const
Return the method by which the device field is managed.
void check_overflow()
Check the product of the extents fits in memory.
static bool can_convert_from(const Buffer< T2, D2, S2 > &other)
Determine if a Buffer<T, Dims, InClassDimStorage> can be constructed from some other Buffer type.
Buffer< not_const_T, Dims, InClassDimStorage > copy_to_interleaved(void *(*allocate_fn)(size_t)=nullptr, void(*deallocate_fn)(void *)=nullptr) const
Like copy(), but the copy is created in interleaved memory layout (vs.
int device_and_host_malloc(const struct halide_device_interface_t *device_interface, void *ctx=nullptr)
int device_sync(void *ctx=nullptr)
static Buffer< void, Dims, InClassDimStorage > make_interleaved(halide_type_t t, int width, int height, int channels)
If you use the (x, y, c) indexing convention, then Halide Buffers are stored planar by default.
Buffer(const std::vector< int > &sizes)
Allocate a new image of known type using a vector of ints as the size.
void embed(int d, int pos=0)
Embed a buffer in-place, increasing the dimensionality.
static constexpr halide_type_t static_halide_type()
Get the Halide type of T.
Buffer(T *data, int first, Args &&...rest)
Initialize an Buffer from a pointer and some sizes.
int copy_to_device(const struct halide_device_interface_t *device_interface, void *ctx=nullptr)
Buffer(Array(&vals)[N])
Make an Buffer that refers to a statically sized array.
const halide_buffer_t * raw_buffer() const
HALIDE_ALWAYS_INLINE not_void_T & operator()(int first, Args... rest)
static Buffer< T, Dims, InClassDimStorage > make_interleaved(int width, int height, int channels)
If you use the (x, y, c) indexing convention, then Halide Buffers are stored planar by default.
halide_type_t type() const
Get the type of the elements.
int device_and_host_free(const struct halide_device_interface_t *device_interface, void *ctx=nullptr)
Buffer(int first)
Allocate a new image of the given size.
halide_buffer_t * raw_buffer()
Get a pointer to the raw halide_buffer_t this wraps.
T * end() const
A pointer to one beyond the element with the highest address.
HALIDE_ALWAYS_INLINE bool device_dirty() const
Buffer< T, Dims, InClassDimStorage > cropped(const std::vector< std::pair< int, int > > &rect) const
Make an image that refers to a sub-rectangle of this image along the first N dimensions.
static constexpr int static_dimensions()
Callers should not use the result if has_static_dimensions is false.
void transpose(int d1, int d2)
Transpose a buffer in-place by changing how it is indexed.
void deallocate()
Drop reference to any owned host or device memory, possibly freeing it, if this buffer held the last ...
size_t size_in_bytes() const
The total number of bytes spanned by the data in memory.
bool has_device_allocation() const
void reset()
Reset the Buffer to be equivalent to a default-constructed Buffer of the same static type (if any); B...
Buffer(halide_type_t t, int first, Args... rest)
Allocate a new image of the given size with a runtime type.
int dimensions() const
Get the dimensionality of the buffer.
Buffer(halide_type_t t, add_const_if_T_is_const< void > *data, int d, const halide_dimension_t *shape)
Initialize an Buffer from a pointer to the min coordinate and an array describing the shape.
int min(int i) const
Access to the mins, strides, extents.
HALIDE_ALWAYS_INLINE const Buffer< T, Dims, InClassDimStorage > & for_each_element(Fn &&f) const
Call a function at each site in a buffer.
void device_deallocate()
Drop reference to any owned device memory, possibly freeing it if this buffer held the last reference...
HALIDE_ALWAYS_INLINE const not_void_T & operator()() const
static Buffer< T, Dims, InClassDimStorage > make_scalar()
Make a zero-dimensional Buffer.
void add_dimension_with_stride(int s)
Add a new dimension with a min of zero, an extent of one, and the specified stride.
Buffer(Buffer< T, Dims, InClassDimStorage > &&other) noexcept
Move constructor.
Buffer< T, Dims, InClassDimStorage > cropped(int d, int min, int extent) const
Make an image that refers to a sub-range of this image along the given dimension.
void crop(int d, int min, int extent)
Crop an image in-place along the given dimension.
Buffer< T, Dims, InClassDimStorage > & fill(Fn &&f)
Fill a buffer by evaluating a callable at every site.
static Buffer< T, Dims, InClassDimStorage > make_scalar(T *data)
Make a zero-dimensional Buffer that points to non-owned, existing data.
Buffer< T, Dims, InClassDimStorage > alias() const
Make a copy of the Buffer which shares the underlying host and/or device allocations as the existing ...
void set_min(Args... args)
size_t number_of_elements() const
The total number of elements this buffer represents.
static void assert_can_convert_from(const Buffer< T2, D2, S2 > &other)
Fail an assertion at runtime or compile-time if an Buffer<T, Dims, InClassDimStorage> cannot be const...
void translate(const std::vector< int > &delta)
Translate an image along the first N dimensions by changing how it is indexed.
Buffer(const Buffer< T, Dims, InClassDimStorage > &other)
Copy constructor.
HALIDE_ALWAYS_INLINE not_void_T & operator()(const int *pos)
T * data() const
Get a pointer to the address of the min coordinate.
Buffer< T, Dims, InClassDimStorage > & fill(not_void_T val)
Buffer(const std::vector< int > &sizes, const std::vector< int > &storage_order)
Buffer< T, Dims, InClassDimStorage > & operator=(Buffer< T2, D2, S2 > &&other)
Move from another Buffer of possibly-different dimensionality and type.
Buffer(halide_type_t t, const std::vector< int > &sizes, const std::vector< int > &storage_order)
Allocate a new image of unknown type using a vector of ints as the size and a vector of indices indic...
Buffer(halide_type_t t, add_const_if_T_is_const< void > *data, const std::vector< halide_dimension_t > &shape)
Initialize a Buffer from a pointer to the min coordinate and a vector describing the shape.
Buffer< T,(Dims==AnyDims ? AnyDims :Dims - 1)> sliced(int d, int pos) const
Make a lower-dimensional buffer that refers to one slice of this buffer.
static Buffer< add_const_if_T_is_const< void >, Dims, InClassDimStorage > make_interleaved(halide_type_t t, T *data, int width, int height, int channels)
Wrap an existing interleaved image.
HALIDE_ALWAYS_INLINE const Buffer< T, Dims, InClassDimStorage > & for_each_value(Fn &&f, Args &&...other_buffers) const
Call a function on every value in the buffer, and the corresponding values in some number of other bu...
bool is_bounds_query() const
Check if an input buffer passed extern stage is a querying bounds.
Buffer< T,(Dims==AnyDims ? AnyDims :Dims - 1)> sliced(int d) const
Make a lower-dimensional buffer that refers to one slice of this buffer at the dimension's minimum.
int left() const
Conventional names for the min and max value of each dimension.
void copy_from(Buffer< T2, D2, S2 > src)
Fill a Buffer with the values at the same coordinates in another Buffer.
Buffer< T, Dims, InClassDimStorage > translated(int d, int dx) const
Make an image which refers to the same data with using translated coordinates in the given dimension.
static Buffer< T, Dims, InClassDimStorage > make_interleaved(T *data, int width, int height, int channels)
Wrap an existing interleaved image.
static void set_default_deallocate_fn(void(*deallocate_fn)(void *))
static Buffer< T, Dims, InClassDimStorage > make_with_shape_of(Buffer< T2, D2, S2 > src, void *(*allocate_fn)(size_t)=nullptr, void(*deallocate_fn)(void *)=nullptr)
Make a buffer with the same shape and memory nesting order as another buffer.
Buffer(const Buffer< T2, D2, S2 > &other)
Construct a Buffer from a Buffer of different dimensionality and type.
bool contains(const std::vector< int > &coords) const
Test if a given coordinate is within the bounds of an image.
Buffer(T *data, const std::vector< halide_dimension_t > &shape)
Initialize a Buffer from a pointer to the min coordinate and a vector describing the shape.
Buffer(T *data, const std::vector< int > &sizes)
Initialize an Buffer from a pointer and a vector of sizes.
Buffer< T, Dims, InClassDimStorage > & operator=(const Buffer< T, Dims, InClassDimStorage > &other)
Standard assignment operator.
T * begin() const
A pointer to the element with the lowest address.
bool all_equal(not_void_T val) const
Tests that all values in this buffer are equal to val.
Buffer(halide_type_t t, add_const_if_T_is_const< void > *data, int first, Args &&...rest)
Initialize an Buffer of runtime type from a pointer and some sizes.
HALIDE_ALWAYS_INLINE Buffer< T2, D2, InClassDimStorage > & as() &
Return a typed reference to this Buffer.
HALIDE_ALWAYS_INLINE const Buffer< T2, D2, InClassDimStorage > & as() const &
Return a const typed reference to this Buffer.
static Buffer< add_const_if_T_is_const< void >, Dims, InClassDimStorage > make_scalar(halide_type_t t)
Make a zero-dimensional Buffer.
ConstantInterval min(const ConstantInterval &a, const ConstantInterval &b)
ConstantInterval max(const ConstantInterval &a, const ConstantInterval &b)
bool any_zero(const Container &c)
BufferDeviceOwnership
This indicates how to deallocate the device for a Halide::Runtime::Buffer.
@ AllocatedDeviceAndHost
No free routine will be called when device ref count goes to zero
@ WrappedNative
halide_device_free will be called when device ref count goes to zero
@ Unmanaged
halide_device_detach_native will be called when device ref count goes to zero
@ Cropped
Call device_and_host_free when DevRefCount goes to zero.
This file defines the class FunctionDAG, which is our representation of a Halide pipeline,...
@ Internal
Not visible externally, similar to 'static' linkage in C.
Internal::ConstantInterval cast(Type t, const Internal::ConstantInterval &a)
Cast operators for ConstantIntervals.
unsigned __INT64_TYPE__ uint64_t
__UINTPTR_TYPE__ uintptr_t
ALWAYS_INLINE T align_up(T p, size_t alignment)
unsigned __INT8_TYPE__ uint8_t
__PTRDIFF_TYPE__ ptrdiff_t
unsigned __INT16_TYPE__ uint16_t
void * memcpy(void *s1, const void *s2, size_t n)
void * memset(void *s, int val, size_t n)
unsigned __INT32_TYPE__ uint32_t
int64_t min
The lower and upper bound of the interval.
An iterator class, so that you can iterate over coordinates in a dimensions using a range-based for l...
bool operator!=(const iterator &other) const
A similar struct for managing device allocations.
BufferDeviceOwnership ownership
static void *(* default_allocate_fn)(size_t)
static void(* default_deallocate_fn)(void *)
The raw representation of an image passed around by generated Halide code.
int32_t dimensions
The dimensionality of the buffer.
halide_dimension_t * dim
The shape of the buffer.
uint64_t device
A device-handle for e.g.
uint8_t * host
A pointer to the start of the data in main memory.
struct halide_type_t type
The type of each buffer element.
const struct halide_device_interface_t * device_interface
The interface used to interpret the above handle.
Each GPU API provides a halide_device_interface_t struct pointing to the code that manages device all...
int(* device_slice)(void *user_context, const struct halide_buffer_t *src, int slice_dim, int slice_pos, struct halide_buffer_t *dst)
int(* device_and_host_malloc)(void *user_context, struct halide_buffer_t *buf, const struct halide_device_interface_t *device_interface)
int(* wrap_native)(void *user_context, struct halide_buffer_t *buf, uint64_t handle, const struct halide_device_interface_t *device_interface)
int(* device_release_crop)(void *user_context, struct halide_buffer_t *buf)
int(* device_crop)(void *user_context, const struct halide_buffer_t *src, struct halide_buffer_t *dst)
int(* copy_to_host)(void *user_context, struct halide_buffer_t *buf)
int(* copy_to_device)(void *user_context, struct halide_buffer_t *buf, const struct halide_device_interface_t *device_interface)
int(* device_free)(void *user_context, struct halide_buffer_t *buf)
int(* detach_native)(void *user_context, struct halide_buffer_t *buf)
int(* device_and_host_free)(void *user_context, struct halide_buffer_t *buf)
int(* device_malloc)(void *user_context, struct halide_buffer_t *buf, const struct halide_device_interface_t *device_interface)
A runtime tag for a type in the halide type system.