
moveResize restriction algorithm

February 1, 2025



The big rectangle represents the overall available area – windows are not visible
outside. The grey rectangles represent the struts (think of them as obstacles –
windows are not visible in these areas).

Strut



Since the titlebar need to have certain number of continuous visible pixels, extend
each strut to the left (by requiredPixels) and to the top (by titlebarHeight). Shrink
the overall available area from the right and bottom by the same amount. These are
the areas where the top left corner of the visible titlebar subrect cannot be placed (red
diagonal lines). The remaining white area is availableRegion.

Strut

Visible subrect



Since availableRegion is a QRegion, it is automatically split into rectangles (green with
dashed borders, and “availableRect” in center).

Strut

Visible subrect

availableRect

availableRect

availableRect

availableRect

availableRect

availableRect
available
Rect



The next step depends on window location (shown in blue) and move/resize type.

availableRect

availableRect

availableRect

availableRect

availableRect

availableRect
available
Rect

Window

Window



Move

Assume move for now. Recall availableRect stores possible locations of the top left
corner of the visible titlebar subrect. For each availableRect (stopping early if
availableRect becomes empty):
▶ Apply restrictions to visible subrect top-left

▶ None needed for move.

▶ Convert visible subrect top-left to window top-left
▶ Extend each availableRect to the left by windowWidth - requiredPixels (gray dots, with

text anchor candidate).

For proposed anchor point (top left corner of the window, calculated from user input,
red question mark), find closest anchor candidate point (green circle).

availableRect

Window

Window

anchor candidate

anchor candidate

anchor candidate

anchor candidate

anchor candidate

anchor candidate anchor candidate ?: proposed anchor

?

closestPoint



Move

We can visually inspect the solution.

Strut

Window

Window

?: proposed anchor

?

closestPoint

Final Window

Final Window



Resize Left
Now assume user is resizing the left of the window. For this case anchor is also top
left. For each availableRect (stopping early if availableRect becomes empty):
▶ Apply restrictions to visible subrect top-left

▶ clip bottom to windowBottom - titlebarHeight (always performed for resize);
▶ clip right to windowRight - requiredPixels;

▶ Convert visible subrect top-left to window top-left
▶ extend left to overall available area left.

For proposed anchor point (red question mark), find closest anchor candidate point
(green circle), while only allowing horizontal movement.

availableRect

Window

Window

anchor candidate

anchor candidate

anchor candidate

?: proposed anchor

?

closestPoint



Resize Left

We can visually inspect the solution.

Strut

Window

Window

?: proposed anchor

?

closestPoint

Final Window

Final Window



Resize Top Right
Now assume user is resizing the top right of the window. For this case anchor is top
right. Transform availableRect and convert to possible locations of the top right
corner of the window. For each availableRect (stopping early if availableRect becomes
empty):
▶ Apply restrictions to visible subrect top-left

▶ clip bottom to windowBottom - titlebarHeight (always performed for resize);
▶ clip left to windowLeft (top-left of visible subrect must be right of windowLeft);

▶ Convert visible subrect top-left to window top-right:
▶ extend right to overall available area right;
▶ move left right by requiredPixels;

For proposed anchor point (red question mark), find closest anchor candidate point
(green circle).

availableRect

Window

Window

anchor candidate

anchor candidate

anchor candidate
anchor candidate

?: proposed anchor

?

closestPoint



Resize Top Right

We can visually inspect the solution.

Strut

Window

Window

?: proposed anchor

?

closestPoint

Final Window

Final Window


