OpenFOAM C++ style guide

May 2010

Contents

1 OpenFOAM C-+-+ style guide|

L3 The .C Filed
[1.4 Coding Practice|.
(Lo Conditional Statementsl
[1.6 for and while Loops|.
(1.7 forAll, forAlllter, forAllConstlter, etc. loops|
(1.8 Splitting Over Multiple Lines|
(1.9 Maths and Logic|

[1.11 Doxygen Special Commands|.
(1.12 HTML Special Commands|
[1.13 Documenting Namespaces|
[1.14 Documenting Typedets and classes defined via macros|
[1.15 Documenting Applications|
[1.16 Orthography (an opinion)

1 OpenFOAM C+H+ style guide

1.1 General

e 80 character lines max

e The normal indentation is 4 spaces per logical level.

e Use spaces for indentation, not tab characters.
e Avoid trailing whitespace.

e The body of control statements (eg, if, else, while, etc). always
delineated with brace brackets. A possible exception can be made
with break or continue as part of a control structure.

e stream output

— « is always four characters after the start of the stream, so that
the « symbols align, i.e.

Info<< ...
os << ...

SO

WarningIn("className: :functionName()")
<< "Warning message"

NOT

WarningIn("className: :functionName()")
<< "Warning message"

e no unnecessary class section headers, i.e. remove

// % % % % % % % % % x % *x * Private Member Functions * * * * % % % % *x x x //
// Check
// Edit

// Write
if they contain nothing, even if planned for ‘future use’

e class titles are centred

1.2 The .H Files

e header file spacing

— Leave two empty lines between sections (as per functions in the
.C file etc)

e use //- Comment comments in header file
— add descriptions to class data and functions
e destructor

— If adding a comment to the destructor - use //- and code as a
normal function:

//- Destructor
~className() ;

e inline functions

— Use inline functions where appropriate in a separate classNamel. H
file. Avoid cluttering the header file with function bodies.

1.3 The .C Files

e Do not open/close namespaces in a .C file
— Fully scope the function name, i.e.

Foam: :returnType Foam::className: :functionName ()

NOT

namespace Foam

{

returnType className: :functionName ()

EXCEPTION
When there are multiple levels of namespace, they may be used in the
.C file, i.e.

namespace Foam

{

namespace compressible

{

namespace RASModels

{

} // End namespace RASModels
} // End namespace compressible
} // End namespace Foam

e Use two empty lines between functions

1.4 Coding Practice

e passing data as arguments or return Pass bool, label and scalar as copy,
anything larger by reference.

e const Use everywhere it is applicable.

e variable initialisation using =

const className& variableName = otherClass.data();
NOT

const className& variableName(otherClass.data());

e virtual functions If a class is virtual - make all derived classes virtual.

1.5 Conditional Statements

if (condition)

{
code;
}
OR
if
(
long condition
)
{
code;
¥

NOT (no space between if and ()

if (condition)
{
code;

b

1.6 for and while Loops

for (i = 0; i < maxI; i++)

{

code;
}
OR
for
(
i=0;
i < maxI;
i++
)
{
code;
}

NOT (no space between for and ()

for(i = 0; i < maxI; i++)
{

code;

Note that when indexing through iterators, it is often slightly more effi-
cient to use the pre-increment form. Eg, ++iter instead of iter++
1.7 forAll, forAlllter, forAllConstIter, etc. loops

like for loops, but
forAll(

NOT
forAll (

Using the forAllIter and forAllConstIter macros is generally advan-
tageous - less typing, easier to find later. However, since they are macros,
they will fail if the iterated object contains any commas.

The following will FAIL!:

forAlllter (HashTable<labelPair, edge, Hash<edge> >, foo, iter)

These convenience macros are also generally avoided in other container
classes and OpenFOAM primitive classes.

1.8 Splitting Over Multiple Lines
1.9 Maths and Logic

e operator spacing

a+b, a-»>

axb, a/b

a&b,a”~b

=b, al=>b

<b, a>b, a> Db, a<=b
[l b, a & b

pop P

e splitting formulae over several lines

Split and indent as per “splitting long lines at an =” with the operator
on the lower line. Align operator so that first variable, function or
bracket on the next line is 4 spaces indented i.e.

variableName =
a*x (a+ b)

- exp(c/d)

* (k + t);

This is sometime more legible when surrounded by extra parentheses:

variableName =
(
a* (a+ b
- exp(c/d)
* (k + t)
)3
e splitting logical tests over several lines
outdent the operator so that the next variable to test is aligned with
the four space indentation, i.e.
if
(
a == true
& b == c
)

1.10 General

e For readability in the comment blocks, certain tags are used that are
translated by pre-filtering the file before sending it to Doxygen.

e The tags start in column 1, the contents follow on the next lines and
indented by 4 spaces. The filter removes the leading 4 spaces from the
following lines until the next tag that starts in column 1.

e The ‘Class’ and ‘Description’ tags are the most important ones.

e The first paragraph following the ‘Description’ will be used for the brief
description, the remaining paragraphs become the detailed description.

For example,

Class
Foam: :myClass

Description
A class for specifying the documentation style.

The class is implemented as a set of recommendations that may
sometimes be useful.

e The class name must be qualified by its namespace, otherwise Doxygen
will think you are documenting some other class.

e If you don’t have anything to say about the class (at the moment), use
the namespace-qualified class name for the description. This aids with
finding these under-documented classes later.

Class
Foam: :myUnderDocumentedClass

Description
Foam: :myUnderDocumentedClass

e Use ‘Class’ and ‘Namespace’ tags in the header files. The Description
block then applies to documenting the class.

e Use ‘InClass’ and ‘InNamespace’ in the source files. The Description
block then applies to documenting the file itself.

InClass
Foam: :myClass

Description
Implements the read and writing of files.
1.11 Doxygen Special Commands

Doxygen has a large number of special commands with a ‘prefix or a (alter-
natively) an ‘Q’ prefix.

The ‘@’ prefix form is recommended for most Doxygen specials, since it
has the advantage of standing out. It also happens to be what projects like
gce and VTK are using.

The ‘prefix form, however, looks a bit better for the ©’ newline command
and when escaping single characters - eg, ', “’, ', etc.

Since the filtering removes the leading 4 spaces within the blocks, the

Doxygen commmands can be inserted within the block without problems.

InClass
Foam: :myClass

Description
Implements the read and writing of files.

An example input file:

@verbatim
patchName
{
type myPatchType;
refValue 100;
value uniform 1;
}
@endverbatim

Within the implementation, a loop over all patches is dome:

Qcode
forAll(patches, patchI)
{
// some operation
}
Q@endcode

1.12 HTML Special Commands

Since Doxygen also handles HTML tags to a certain extent, the angle brack-
ets need quoting in the documentation blocks. Non-HTML tags cause Doxy-
gen to complain, but seem to work anyhow.

€g,

e The template with type <HR> is a bad example.

e The template with type \<HR\> is a better example.

e The template with type <Type> causes Doxygen to complain about an
unknown html type, but it seems to work okay anyhow.

1.13 Documenting Namespaces

e [f namespaces are explictly declared with the Namespace () macro, they
should be documented there.

e If the namespaces is used to hold sub-models, the namespace can be
documented in the same file as the class with the model selector. eg,

documented namespace ’Foam::functionEntries’ within the
class ’Foam::functionEntry’

e If nothing else helps, find some sensible header. eg,

namespace ’Foam’ is documented in the foamVersion.H file

1.14 Documenting Typedefs and classes defined via macros

. not yet properly resolved

1.15 Documenting Applications

Any number of classes might be defined by a particular application, but
these classes will not, however, be available to other parts of OpenFOAM.
At the moment, the sole purpuse for running Doxygen on the applications is
to extract program usage information for the ‘-doc’ option.

The documentation for a particular application is normally contained
within the first comment block in a .C source file. The solution is this to
invoke a special filter for the “/applications/{solver,utilities}/” directories
that only allows the initial comment block for the .C files through.

The layout of the application documentation has not yet been finalized,
but foamToVTK shows an initial attempt.

1.16 Orthography (an opinion)

Given the origins of OpenFOAM, the British spellings (eg, neighbour and
not neighbor) are generally favoured. For code sections that interact with
external libraries, it can be useful to adopt American spellings, especially for

10

names that constitute a significant part of the external library - eg, ‘color’
within graphics sub-systems.

Both “-ize’ and the ‘-ise’ variant are found in the code comments. If used
as a variable or class method name, it is probably better to use ‘-ize’, which
is considered the main form by the Oxford University Press.

Eg,

myClass.initialize()

The word “its” (possesive) vs. “it’s” (colloquial for “it is” or “it has”)
seems to confuse non-native (and some native) English speakers. It is better
to donate the extra keystrokes and write “it is” or “it has”. Any remaining
“it’s” are likely an incorrect spelling of “its”.

11

	OpenFOAM C++ style guide
	General
	The .H Files
	The .C Files
	Coding Practice
	Conditional Statements
	for and while Loops
	forAll, forAllIter, forAllConstIter, etc. loops
	Splitting Over Multiple Lines
	Maths and Logic
	General
	Doxygen Special Commands
	HTML Special Commands
	Documenting Namespaces
	Documenting Typedefs and classes defined via macros
	Documenting Applications
	Orthography (an opinion)

